import numpy as np import itertools from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL x,y = var('x,y') R = LaurentPolynomialRing(ZZ,'x,y') def kinks(p): if p.dim() < 2: return [] kinks = [] bdy = p.traverse_boundary() for idx,i in enumerate(bdy): j = bdy[idx-1] k = bdy[(idx+1)%len(bdy)] m1 = p.vertices()[k] - p.vertices()[i] m2 = p.vertices()[j] - p.vertices()[i] m1 = np.array(m1)/gcd(m1) m2 = np.array(m2)/gcd(m2) kinks += [int(abs(np.linalg.det([m1,m2])))] return kinks def area(p): if p.dim() < 2: return 0 return len(p.interior_points()) + 1/2 * len(p.boundary_points()) - 1 def lengths(p): if p.dim() < 2: return [p.npoints()-1] return [e.npoints()-1 for e in p.edges()] def size(p): return max([max(abs(v1[0]-v2[0]),abs(v1[1]-v2[1])) for v1,v2 in itertools.product(p.vertices(),repeat=2)]) def tex_poly(f,p,scale,N): x_min = min([v[0] for v in p.vertices()]) x_max = max([v[0] for v in p.vertices()]) y_min = min([v[1] for v in p.vertices()]) y_max = max([v[1] for v in p.vertices()]) width = max([1,x_max-x_min,y_max-y_min]) output = f"\\begin{{tikzpicture}}[scale=2/{N*scale}] " if p.dim() == 0: output += "\\fill (0,0) circle (1pt); " elif p.dim() == 1: output += f"\\draw {tuple(p.vertices()[0])} -- {tuple(p.vertices()[1])}; " else: output += "\\draw " + ' -- '.join([str(tuple(p.vertices()[i])) for i in p.traverse_boundary()]) + " -- cycle; " for v in p.points(): coeffs = restrict(f,[tuple(v)]).coefficients() coeff = coeffs[0] if len(coeffs) > 0 else 0 output += f"\\fill {tuple(v)} node{{\\tiny${coeff}$}} circle (.5pt);" output += "\\end{tikzpicture}" return output def tex(vertices,edges,N=1): vertices = [(f,newton_polytope(f)) for f in vertices] max_vert = max([p.nvertices() for f,p in vertices]) x_vars = [] y_vars = [] count = [0 for n in range(max_vert+1)] for f,p in vertices: n = p.nvertices() x_vars.append(n) y_vars.append(count[n]) count[n] += 1 x_vars = [round(x/max(x_vars),3) for x in x_vars] y_vars = [round(y/max(y_vars),3) for y in y_vars] scale = max([1,2*(max(x_vars)-min(x_vars)),max(y_vars)-min(y_vars)]) output = "\\begin{figure}[h!]\n" output += "\\centering\n" output += f"\\begin{{tikzpicture}}[xscale=25/{scale},yscale=20]\n" for i in range(len(vertices)): output += f"\\node ({i}) at ({x_vars[i]},{y_vars[i]}) {{}}; " output += "\n" for e in edges: output += f"\\draw[gray] ({e[0]}) -- ({e[1]}); " output += '\n' for i in range(len(vertices)): f,p = vertices[i] if i == 0: output += f"\\draw[red] ({i}) node {{" else: output += f"\\draw ({i}) node {{" output += tex_poly(f,p,scale,N) output += "};\n" output += "\\end{tikzpicture}\n" output += "\\caption{A mutation graph.}\n" output += "\\end{figure}" print(output) def newton_polytope(f): return LatticePolytope([tuple(term[1].exponents()[0]) for term in list(R(f))]) def restrict(f,p): p = [tuple(v) for v in LatticePolytope(p).points()] return R(sum([term[0]*term[1] for term in list(R(f)) if tuple(term[1].exponents()[0]) in p])) def mut(f,g,w,b): p = newton_polytope(f) h_min = min([np.dot(w,v)+b for v in p.vertices()]) h_max = max([np.dot(w,v)+b for v in p.vertices()]) res = 0 for h in range(h_min,h_max+1): p_h = [tuple(v) for v in p.points() if np.dot(w,v)+b == h] f_h = restrict(f,p_h) if len(p_h) > 0 else 0 if h < 0: if f_h/g^(-h) not in R: return 'not mutable' res += R(f_h/g^(-h)) else: res += R(f_h*g^h) return res def index(f,lst): res = (-1,f) p = newton_polytope(f) p_ppl = LatticePolytope_PPL([tuple(v) for v in p.vertices()]) for i,g in enumerate(lst): q = newton_polytope(g) q_ppl = LatticePolytope_PPL([tuple(v) for v in q.vertices()]) if p_ppl.is_isomorphic(q_ppl): iso = p_ppl.find_isomorphism(q_ppl) iso_f = 0 for v in p.points(): iso_v = tuple(iso(LatticePolytope_PPL(tuple(v))).vertices()[0]) coeffs = restrict(f,[tuple(v)]).coefficients() coeff = coeffs[0] if len(coeffs) > 0 else 0 iso_f += coeff*x^iso_v[0]*y^iso_v[1] iso_f = R(iso_f) if R(g) == iso_f: return (i,iso_f) else: res = (-1,iso_f) return res def add_and_next(f,f_old_lst,N,vertices,edges): if f == 'not mutable': return p = newton_polytope(f) if size(p) > N: return index_old_lst = [index(f_old,vertices)[0] for f_old in f_old_lst] index_new,f_iso = index(f,vertices) # if f is old (up to isomorphism) if index_new >= 0: for index_old in index_old_lst: if index_old != index_new: edge = (index_old,index_new) if index_old < index_new else (index_new,index_old) if edge not in edges: edges.append(edge) return # if f is new vertices.append(f_iso) index_new = len(vertices)-1 for index_old in index_old_lst: edges.append((index_old,index_new)) print(index_old_lst,"->",index_new,"\r\t\t lengths ",lengths(p),"\r\t\t\t\t\t\t kinks ",kinks(p),"\r\t\t\t\t\t\t\t\t\t\t area ",area(p),"\t polytope ",[tuple(v) for v in p.vertices()],"\r\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t polynomial ",f_iso) # products and next mutation for f_factor in vertices: if f_factor != 1: add_and_next(f_iso*f_factor,[f_iso,f_factor],N,vertices,edges) mut_step(f_iso,N,vertices,edges) def mut_step(f,N,vertices,edges): p = newton_polytope(f) # multiples if f == 1: for n in range(1,N+1): f_new = (1+x)^n add_and_next(f_new,[f],N,vertices,edges) return # mutate smaller for w in p.facet_normals(): for u in [(-w[1]/gcd(w[0],w[1]),w[0]/gcd(w[0],w[1])),(w[1]/gcd(w[0],w[1]),-w[0]/gcd(w[0],w[1]))]: g = R(1+x^u[0]*y^u[1]) h_min = min([np.dot(w,v) for v in p.vertices()]) h_max = max([np.dot(w,v) for v in p.vertices()]) slices = [[v for v in p.points() if np.dot(w,v) == h] for h in range(h_min,h_max+1)] # distance between graph of phi_0 and slice length dist = min([len(slice)-1 + h for h,slice in enumerate(slices)]) for b in range(-dist-h_min,-dist+len(slices[0])): f_new = mut(f,g,w,b-h_min) if f_new != "not mutable": p = newton_polytope(f_new) if size(p) <= N: print([tuple(v) for v in p.vertices()],f_new,",",f,",",g,w,b,h_min,"smaller") add_and_next(f_new,[f],N,vertices,edges) # mutate bigger for w in itertools.product(range(-N,N+1),repeat=2): if gcd(w) != 1: continue w0min = sorted(p.vertices(),key=lambda v: np.dot(w,v))[0] for u in [(-w[1]/gcd(w[0],w[1]),w[0]/gcd(w[0],w[1])),(w[1]/gcd(w[0],w[1]),-w[0]/gcd(w[0],w[1]))]: g = R(1+x^u[0]*y^u[1]) h_min = min([np.dot(w,v) for v in p.vertices()]) for b in range(N): f_new = mut(f,g,w,b-h_min) if f_new != "not mutable": p = newton_polytope(f_new) if size(p) <= N: print([tuple(v) for v in p.vertices()],f_new,",",f,",",g,w,b,h_min,"bigger") add_and_next(f_new,[f],N,vertices,edges) def muts(f,N): vertices = [f] edges = [] mut_step(f,N,vertices,edges) edges = sorted(set(edges)) return vertices,edges def delete_reducible(vs,es): vertices = [] removed = [] edges = [] for i,f in enumerate(vs): if sum([mult for factor,mult in R(f).factor()]) <= 1: vertices.append(f) else: removed.append(i) for e in es: if e[0] in removed or e[1] in removed: continue edge = (e[0]-len([i for i in removed if i < e[0]]),e[1]-len([i for i in removed if i < e[1]])) edges.append(edge) return vertices,edges #f = (1+x)^2+x*y^2 #f = (1+x)^4+y*(1+4*x+3*x^2)+y^2*(1+2*x)+x^3 #f = (1+x)^3+2*y*(1+x)+y^2 f = 1 N = 2 vertices,edges = muts(f,N) #vertices2,edges2 = delete_reducible(vertices,edges) tex(vertices,edges,1/2)