def integer_partitions(n,l=0): l = n if l == 0 else l a = [0 for i in range(n + 1)] k = 1 a[0] = 0 a[1] = n while k != 0: x = a[k - 1] + 1 y = a[k] - 1 k -= 1 while x <= y and k < l - 1: a[k] = x y -= x k += 1 a[k] = x + y yield a[:k + 1] def exists(a,b): return max(a) <= sum(b) and max(b) <= sum(a) and max(a) + max(b) <= max(sum(a),sum(b)) def no_family(a,b): return sum(a)*sum(b) + 1 == sum([ai^2 for ai in a]) + sum([bi^2 for bi in b]) def alpha_inv_exists(a,b): return sum(a) in b or sum(b) in a def beta_decreases(a,b): return len(a)*sum(b) - sum(a) < sum(a) or len(b)*sum(a) - sum(b) < sum(b) def operations(a,b,N): yield (a,b) yield (b,a) if 2*sum(a)+sum(b) <= N: for tup in operations(a,[sum(a)]+b,N): yield tup if sum(a)+len(b)*sum(a)-sum(b) <= N: for tup in operations(a,[sum(a) - bi for bi in b],N): yield tup def mut(a,b): return list(set([(tuple(tup[0]),tuple(tup[1])) for tup in operations([1],[1],a+b) if sum(tup[0]) <= a and sum(tup[1]) <= b])) N0 = 1 N = 10 for k in range(N0,N0+N): da = 4 db = da+k #if gcd(da,db) > 1: # continue print("---",da,db) count = 0 for a in integer_partitions(da): for b in integer_partitions(db): if exists(a,b) and no_family(a,b): # and not alpha_inv_exists(a,b) and not beta_decreases(a,b): count += 1 print(a,b) print(count) #print(len(mut(da,db)))